The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi.

نویسندگان

  • Ricardo Villa-Bellosta
  • Silvia Ravera
  • Victor Sorribas
  • Gerti Stange
  • Moshe Levi
  • Heini Murer
  • Jürg Biber
  • Ian C Forster
چکیده

The principal mediators of renal phosphate (P(i)) reabsorption are the SLC34 family proteins NaPi-IIa and NaPi-IIc, localized to the proximal tubule (PT) apical membrane. Their abundance is regulated by circulatory factors and dietary P(i). Although their physiological importance has been confirmed in knockout animal studies, significant P(i) reabsorptive capacity remains, which suggests the involvement of other secondary-active P(i) transporters along the nephron. Here we show that a member of the SLC20 gene family (PiT-2) is localized to the brush-border membrane (BBM) of the PT epithelia and that its abundance, confirmed by Western blot and immunohistochemistry of rat kidney slices, is regulated by dietary P(i). In rats treated chronically on a high-P(i) (1.2%) diet, there was a marked decrease in the apparent abundance of PiT-2 protein in kidney slices compared with those from rats kept on a chronic low-P(i) (0.1%) diet. In Western blots of BBM from rats that were switched from a chronic low- to high-P(i) diet, NaPi-IIa showed rapid downregulation after 2 h; PiT-2 was also significantly downregulated at 24 h and NaPi-IIc after 48 h. For the converse dietary regime, NaPi-IIa showed adaptation within 8 h, whereas PiT-2 and NaPi-IIc showed a slower adaptive trend. Our findings suggest that PiT-2, until now considered as a ubiquitously expressed P(i) housekeeping transporter, is a novel mediator of P(i) reabsorption in the PT under conditions of acute P(i) deprivation, but with a different adaptive time course from NaPi-IIa and NaPi-IIc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Regulation of the Renal 1 Sodium / Phosphate Co - Transporters NaPi - IIa , NaPi - IIc 2 and PiT - 2 in Dietary Potassium Deficiency 3

25 Dietary potassium (K)-deficiency is accompanied by phosphaturia, and decreased renal 26 brush border membrane (BBM) vesicle sodium (Na)-dependent phosphate (Pi) transport 27 activity. We previously showed that K-deficiency in rats leads to increased abundance in 28 the proximal tubule BBM of the apical Na/Pi co-transporter NaPi-IIa, but that the activity, 29 diffusion and clustering of NaPi-...

متن کامل

Phosphate transporters of the SLC20 and SLC34 families.

Transport of inorganic phosphate (Pi) across the plasma membrane is essential for normal cellular function. Members of two families of SLC proteins (SLC20 and SLC34) act as Na(+)-dependent, secondary-active cotransporters to transport Pi across cell membranes. The SLC34 proteins are expressed in specific organs important for Pi homeostasis: NaPi-IIa (SLC34A1) and NaPi-IIc (SLC34A3) fulfill esse...

متن کامل

Posttranscriptional regulation of the proximal tubule NaPi-II transporter in response to PTH and dietary Pi.

The rate of proximal tubular reabsorption of phosphate (Pi) is a major determinant of Pi homeostasis. Deviations of the extracellular concentration of Piare corrected by many factors that control the activity of Na-Pi cotransport across the apical membrane. In this review, we describe the regulation of proximal tubule Pi reabsorption via one particular Na-Pi cotransporter (the type IIa cotransp...

متن کامل

AFLUID November 46/5

Murer, Heini, Ian Forster, Nati Hernando, Georg Lambert, Martin Traebert, and Jürg Biber. Posttranscriptional regulation of the proximal tubule NaPi-II transporter in response to PTH and dietary Pi. Am. J. Physiol. 277 (Renal Physiol. 46): F676–F684, 1999.—The rate of proximal tubular reabsorption of phosphate (Pi) is a major determinant of Pi homeostasis. Deviations of the extracellular concen...

متن کامل

Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet.

Dietary phosphate levels regulate the renal brush-border type IIa Na-Pi cotransporter. Another Na-Pi cotransporter, type IIc, colocalizes with type IIa Na-Pi cotransporter in the apical membrane of renal proximal tubular cells. The goal of the present study was to determine whether dietary phosphate levels also rapidly regulate the type IIc Na-Pi cotransporter. Type IIa and type IIc transporter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 296 4  شماره 

صفحات  -

تاریخ انتشار 2009